In what follows, please find the results of additional analyses. These include models, results without covariates, results with all participants (hence, including those removed due to speeding).

Set-up

Load packages.

# define packages
packages <- c("cowplot", "devtools", "faoutlier", "GGally", "kableExtra", "knitr", "lavaan", "magrittr", "MVN", "psych",
    "pwr", "quanteda", "semTools", "td", "tidyverse")

# load packages
lapply(packages, library, character.only = TRUE, quietly = TRUE)

Load data.

# load workspace
load("data/workspace.rdata")

VIF

In what follows, you can find estimations of variance inflation factors, which help gauge multicollinearity. Generally, values above 5 or even 10 are considered problematic. However, these are only rules of thumb, and multicollinearity can occur with lower values. Indeed, although the values reported below are not above 5, they are increased, suggesting that multicollinearity might be at play here, which the preregistered analyses also confirm.

# Self-Efficacy
model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
SE01_01 ~~ a*SE01_02
SE01_03 ~~ a*SE01_04
trust_community =~ TR01_01 + TR01_02 + TR01_03
trust_provider =~ TR01_04 + TR01_05 + TR01_06 + TR01_07 + TR01_08 + TR01_09
trust_spec =~ trust_community + trust_provider

self_eff ~ pri_con + grats_gen + pri_delib + trust_spec

# Covariates
GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_01 + TR01_02 + TR01_03 + TR01_04 + TR01_05 + TR01_06 + TR01_07 + TR01_08 + TR01_09 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit <- sem(model, data = d, estimator = "MLR", missing = "ML")
r_self_eff <- inspect(fit, what = "rsquare")["self_eff"] # extract rsquare
vif_self_eff <- 1 / (1 - r_self_eff) # compute vif

# Privacy Deliberation
model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
SE01_01 ~~ a*SE01_02
SE01_03 ~~ a*SE01_04
trust_community =~ TR01_01 + TR01_02 + TR01_03
trust_provider =~ TR01_04 + TR01_05 + TR01_06 + TR01_07 + TR01_08 + TR01_09
trust_spec =~ trust_community + trust_provider
pri_delib ~ self_eff + pri_con + grats_gen + trust_spec

# Covariates
GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_01 + TR01_02 + TR01_03 + TR01_04 + TR01_05 + TR01_06 + TR01_07 + TR01_08 + TR01_09 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit <- sem(model, data = d, estimator = "MLR", missing = "ML")
r_pri_delib <- inspect(fit, what = "rsquare")["pri_delib"]
vif_pri_delib <- 1 / (1 - r_pri_delib)

## Privacy Concerns
model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
SE01_01 ~~ a*SE01_02
SE01_03 ~~ a*SE01_04
trust_community =~ TR01_01 + TR01_02 + TR01_03
trust_provider =~ TR01_04 + TR01_05 + TR01_06 + TR01_07 + TR01_08 + TR01_09
trust_spec =~ trust_community + trust_provider

pri_con ~ self_eff + pri_delib + grats_gen + trust_spec

# Covariates
GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_01 + TR01_02 + TR01_03 + TR01_04 + TR01_05 + TR01_06 + TR01_07 + TR01_08 + TR01_09 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit <- sem(model, data = d, estimator = "MLR", missing = "ML")
r_pri_con <- inspect(fit, what = "rsquare")["pri_con"]
vif_pri_con <- 1 / (1 - r_pri_con)

# Gratifications
model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
SE01_01 ~~ a*SE01_02
SE01_03 ~~ a*SE01_04
trust_community =~ TR01_01 + TR01_02 + TR01_03
trust_provider =~ TR01_04 + TR01_05 + TR01_06 + TR01_07 + TR01_08 + TR01_09
trust_spec =~ trust_community + trust_provider
grats_gen ~ self_eff + pri_con + pri_delib + trust_spec

# Covariates
GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_01 + TR01_02 + TR01_03 + TR01_04 + TR01_05 + TR01_06 + TR01_07 + TR01_08 + TR01_09 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit <- sem(model, data = d, estimator = "MLR", missing = "ML")
r_grats_gen <- inspect(fit, what = "rsquare")["grats_gen"]
vif_grats_gen <- 1 / (1 - r_grats_gen)

# Trust
model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
SE01_01 ~~ a*SE01_02
SE01_03 ~~ a*SE01_04
trust_community =~ TR01_01 + TR01_02 + TR01_03
trust_provider =~ TR01_04 + TR01_05 + TR01_06
trust_system =~ TR01_07 + TR01_08 + TR01_09
trust_spec =~ trust_community + trust_provider + trust_system

trust_spec ~ self_eff + pri_con + grats_gen + pri_delib

# Covariates
GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_01 + TR01_02 + TR01_03 + TR01_04 + TR01_05 + TR01_06 + TR01_07 + TR01_08 + TR01_09 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit <- sem(model, data = d, estimator = "MLR", missing = "ML")
r_trust_spec <- inspect(fit, what = "rsquare")["trust_spec"]
vif_trust_spec <- 1 / (1 - r_trust_spec)
# Table
tibble("Gratifications" = vif_grats_gen, "Trust Specific" = vif_trust_spec, "Privacy Concerns" = vif_pri_con, "Privacy Deliberation" = vif_pri_delib, "Self-Efficacy" = vif_self_eff) %>% 
  kable() %>% 
  kable_styling("striped")
Gratifications Trust Specific Privacy Concerns Privacy Deliberation Self-Efficacy
2.73 3.14 1.61 1.51 1.51

Preregistered model

I first analyze the model how it was initially preregistered.

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
trust_community =~ TR02_01 + TR01_01 + TR01_02 + TR01_03
trust_provider =~ TR02_02 + TR01_04 + TR01_05 + TR01_06
trust_system =~ TR02_03 + TR01_07 + TR01_08 + TR01_09
trust =~ trust_community + trust_provider + trust_system

self_dis_log ~ a1*pri_con + b1*grats_gen + c1*pri_delib + d1*self_eff + e1*trust

# Covariates
self_dis_log + GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR02_01 + TR02_02 + TR02_03 + TR01_01 + TR01_02 + TR01_03 + TR01_04 + TR01_05 + TR01_06 + TR01_07 + TR01_08 + TR01_09 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit_prereg <- sem(model, data = d, estimator = "MLR", missing = "ML")
summary(fit_prereg, fit = TRUE, std = TRUE)
lavaan 0.6.16.1845 ended normally after 371 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       217
  Number of equality constraints                     1

                                                  Used       Total
  Number of observations                           558         559
  Number of missing patterns                         3            

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                              1586.064    1215.351
  Degrees of freedom                               477         477
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.305
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                             15518.638   11639.461
  Degrees of freedom                               627         627
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.333

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.926       0.933
  Tucker-Lewis Index (TLI)                       0.902       0.912
                                                                  
  Robust Comparative Fit Index (CFI)                         0.935
  Robust Tucker-Lewis Index (TLI)                            0.915

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -25561.311  -25561.311
  Scaling correction factor                                  1.272
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -24768.279  -24768.279
  Scaling correction factor                                  1.296
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               51554.622   51554.622
  Bayesian (BIC)                             52488.684   52488.684
  Sample-size adjusted Bayesian (SABIC)      51802.997   51802.997

Root Mean Square Error of Approximation:

  RMSEA                                          0.065       0.053
  90 Percent confidence interval - lower         0.061       0.049
  90 Percent confidence interval - upper         0.068       0.056
  P-value H_0: RMSEA <= 0.050                    0.000       0.085
  P-value H_0: RMSEA >= 0.080                    0.000       0.000
                                                                  
  Robust RMSEA                                               0.060
  90 Percent confidence interval - lower                     0.056
  90 Percent confidence interval - upper                     0.064
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.055       0.055

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                              
    PC01_01             1.000                               1.595    0.926
    PC01_02             0.990    0.027   36.261    0.000    1.579    0.894
    PC01_04             0.972    0.027   35.770    0.000    1.550    0.884
    PC01_05             1.002    0.024   42.507    0.000    1.599    0.907
    PC01_06             0.855    0.038   22.715    0.000    1.363    0.795
    PC01_07             0.995    0.023   43.874    0.000    1.587    0.921
  grats_gen =~                                                            
    GR02_01             1.000                               1.131    0.842
    GR02_02             1.121    0.033   33.552    0.000    1.267    0.894
    GR02_03             1.022    0.048   21.487    0.000    1.155    0.863
    GR02_04             0.987    0.048   20.426    0.000    1.116    0.849
    GR02_05             1.075    0.040   27.159    0.000    1.215    0.848
  pri_delib =~                                                            
    PD01_01             1.000                               1.477    0.856
    PD01_02             0.669    0.048   13.865    0.000    0.988    0.643
    PD01_03             0.704    0.055   12.844    0.000    1.040    0.668
    PD01_04             0.839    0.047   17.744    0.000    1.239    0.726
    PD01_05             0.714    0.050   14.199    0.000    1.054    0.636
  self_eff =~                                                             
    SE01_01             1.000                               1.117    0.809
    SE01_02             0.813    0.057   14.200    0.000    0.907    0.672
    SE01_03             0.928    0.045   20.405    0.000    1.036    0.774
    SE01_04             0.951    0.043   22.273    0.000    1.062    0.788
  trust_community =~                                                      
    TR02_01             1.000                               0.995    0.863
    TR01_01             0.997    0.050   19.980    0.000    0.992    0.782
    TR01_02             0.860    0.041   20.893    0.000    0.855    0.778
    TR01_03             0.959    0.042   22.816    0.000    0.953    0.827
  trust_provider =~                                                       
    TR02_02             1.000                               0.978    0.850
    TR01_04             1.060    0.046   23.034    0.000    1.036    0.863
    TR01_05             0.911    0.047   19.287    0.000    0.891    0.770
    TR01_06             0.923    0.035   26.574    0.000    0.903    0.816
  trust_system =~                                                         
    TR02_03             1.000                               1.034    0.857
    TR01_07             0.802    0.044   18.371    0.000    0.829    0.705
    TR01_08             0.820    0.057   14.411    0.000    0.848    0.654
    TR01_09             1.073    0.043   24.682    0.000    1.110    0.826
  trust =~                                                                
    trust_communty      1.000                               0.815    0.815
    trust_provider      1.176    0.064   18.418    0.000    0.975    0.975
    trust_system        1.322    0.077   17.165    0.000    1.036    1.036

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  self_dis_log ~                                                        
    pri_con   (a1)   -0.058    0.079   -0.729    0.466   -0.092   -0.040
    grats_gen (b1)    0.068    0.130    0.521    0.602    0.077    0.034
    pri_delib (c1)   -0.169    0.092   -1.840    0.066   -0.249   -0.109
    self_eff  (d1)    0.758    0.139    5.447    0.000    0.846    0.370
    trust     (e1)   -0.213    0.230   -0.923    0.356   -0.172   -0.075
    male             -0.021    0.197   -0.109    0.913   -0.021   -0.005
    age               0.003    0.006    0.570    0.569    0.003    0.024
    edu               0.213    0.116    1.836    0.066    0.213    0.078
  GR02_01 ~                                                             
    male             -0.127    0.116   -1.096    0.273   -0.127   -0.047
    age               0.000    0.004    0.091    0.927    0.000    0.004
    edu               0.005    0.068    0.073    0.941    0.005    0.003
  GR02_02 ~                                                             
    male             -0.067    0.120   -0.559    0.576   -0.067   -0.024
    age               0.006    0.004    1.542    0.123    0.006    0.068
    edu              -0.080    0.071   -1.127    0.260   -0.080   -0.047
  GR02_03 ~                                                             
    male             -0.025    0.116   -0.220    0.826   -0.025   -0.009
    age               0.001    0.004    0.310    0.756    0.001    0.014
    edu              -0.083    0.067   -1.237    0.216   -0.083   -0.052
  GR02_04 ~                                                             
    male              0.028    0.113    0.250    0.802    0.028    0.011
    age               0.005    0.004    1.304    0.192    0.005    0.057
    edu              -0.072    0.067   -1.072    0.284   -0.072   -0.046
  GR02_05 ~                                                             
    male             -0.140    0.124   -1.136    0.256   -0.140   -0.049
    age              -0.004    0.004   -0.874    0.382   -0.004   -0.039
    edu               0.013    0.073    0.173    0.862    0.013    0.007
  PC01_01 ~                                                             
    male             -0.182    0.151   -1.206    0.228   -0.182   -0.053
    age              -0.004    0.005   -0.820    0.412   -0.004   -0.036
    edu               0.110    0.087    1.255    0.209    0.110    0.054
  PC01_02 ~                                                             
    male             -0.302    0.154   -1.966    0.049   -0.302   -0.085
    age              -0.008    0.005   -1.663    0.096   -0.008   -0.072
    edu               0.047    0.089    0.522    0.601    0.047    0.022
  PC01_04 ~                                                             
    male             -0.225    0.152   -1.475    0.140   -0.225   -0.064
    age              -0.010    0.005   -1.980    0.048   -0.010   -0.085
    edu               0.113    0.089    1.269    0.204    0.113    0.054
  PC01_05 ~                                                             
    male             -0.098    0.154   -0.636    0.525   -0.098   -0.028
    age              -0.006    0.005   -1.164    0.244   -0.006   -0.051
    edu               0.090    0.090    0.996    0.319    0.090    0.043
  PC01_06 ~                                                             
    male             -0.108    0.150   -0.722    0.470   -0.108   -0.032
    age              -0.005    0.005   -1.055    0.291   -0.005   -0.046
    edu               0.043    0.087    0.491    0.623    0.043    0.021
  PC01_07 ~                                                             
    male             -0.174    0.150   -1.160    0.246   -0.174   -0.050
    age              -0.006    0.005   -1.337    0.181   -0.006   -0.058
    edu               0.081    0.087    0.934    0.350    0.081    0.040
  TR02_01 ~                                                             
    male             -0.156    0.099   -1.570    0.116   -0.156   -0.067
    age              -0.003    0.003   -0.813    0.416   -0.003   -0.038
    edu               0.026    0.060    0.433    0.665    0.026    0.019
  TR02_02 ~                                                             
    male              0.076    0.100    0.762    0.446    0.076    0.033
    age              -0.004    0.003   -1.216    0.224   -0.004   -0.053
    edu               0.088    0.059    1.490    0.136    0.088    0.064
  TR02_03 ~                                                             
    male              0.064    0.104    0.619    0.536    0.064    0.027
    age              -0.007    0.004   -1.939    0.053   -0.007   -0.088
    edu              -0.018    0.060   -0.295    0.768   -0.018   -0.012
  TR01_01 ~                                                             
    male             -0.297    0.108   -2.744    0.006   -0.297   -0.117
    age              -0.004    0.004   -1.103    0.270   -0.004   -0.049
    edu               0.005    0.062    0.086    0.931    0.005    0.004
  TR01_02 ~                                                             
    male             -0.140    0.095   -1.480    0.139   -0.140   -0.064
    age              -0.002    0.003   -0.566    0.571   -0.002   -0.025
    edu               0.023    0.053    0.434    0.664    0.023    0.018
  TR01_03 ~                                                             
    male             -0.134    0.099   -1.361    0.173   -0.134   -0.058
    age              -0.004    0.003   -1.211    0.226   -0.004   -0.055
    edu              -0.003    0.060   -0.046    0.964   -0.003   -0.002
  TR01_04 ~                                                             
    male             -0.086    0.104   -0.831    0.406   -0.086   -0.036
    age               0.000    0.003    0.110    0.912    0.000    0.005
    edu              -0.051    0.058   -0.880    0.379   -0.051   -0.036
  TR01_05 ~                                                             
    male             -0.045    0.099   -0.450    0.653   -0.045   -0.019
    age               0.001    0.003    0.344    0.731    0.001    0.015
    edu               0.018    0.058    0.309    0.757    0.018    0.013
  TR01_06 ~                                                             
    male              0.046    0.095    0.480    0.631    0.046    0.021
    age              -0.004    0.003   -1.250    0.211   -0.004   -0.053
    edu               0.025    0.056    0.445    0.656    0.025    0.019
  TR01_07 ~                                                             
    male              0.092    0.100    0.915    0.360    0.092    0.039
    age              -0.004    0.003   -1.176    0.240   -0.004   -0.050
    edu              -0.055    0.058   -0.948    0.343   -0.055   -0.040
  TR01_08 ~                                                             
    male              0.027    0.112    0.245    0.806    0.027    0.011
    age               0.003    0.004    0.824    0.410    0.003    0.035
    edu              -0.093    0.065   -1.435    0.151   -0.093   -0.061
  TR01_09 ~                                                             
    male             -0.121    0.115   -1.044    0.296   -0.121   -0.045
    age              -0.002    0.004   -0.405    0.685   -0.002   -0.018
    edu              -0.146    0.068   -2.156    0.031   -0.146   -0.091
  PD01_01 ~                                                             
    male             -0.177    0.148   -1.197    0.231   -0.177   -0.051
    age              -0.015    0.005   -3.275    0.001   -0.015   -0.137
    edu              -0.026    0.085   -0.310    0.756   -0.026   -0.013
  PD01_02 ~                                                             
    male             -0.119    0.131   -0.906    0.365   -0.119   -0.039
    age              -0.014    0.004   -3.443    0.001   -0.014   -0.142
    edu               0.031    0.077    0.405    0.686    0.031    0.017
  PD01_03 ~                                                             
    male             -0.321    0.132   -2.425    0.015   -0.321   -0.103
    age              -0.004    0.004   -1.024    0.306   -0.004   -0.044
    edu               0.065    0.080    0.807    0.419    0.065    0.035
  PD01_04 ~                                                             
    male             -0.412    0.145   -2.847    0.004   -0.412   -0.121
    age              -0.009    0.005   -1.904    0.057   -0.009   -0.082
    edu               0.103    0.085    1.207    0.227    0.103    0.051
  PD01_05 ~                                                             
    male             -0.205    0.142   -1.439    0.150   -0.205   -0.062
    age              -0.012    0.004   -2.696    0.007   -0.012   -0.111
    edu              -0.002    0.084   -0.025    0.980   -0.002   -0.001
  SE01_01 ~                                                             
    male              0.119    0.118    1.009    0.313    0.119    0.043
    age               0.000    0.004    0.005    0.996    0.000    0.000
    edu               0.211    0.068    3.110    0.002    0.211    0.129
  SE01_02 ~                                                             
    male              0.059    0.112    0.525    0.599    0.059    0.022
    age              -0.013    0.004   -3.600    0.000   -0.013   -0.151
    edu               0.198    0.066    2.996    0.003    0.198    0.123
  SE01_03 ~                                                             
    male              0.194    0.114    1.696    0.090    0.194    0.072
    age               0.001    0.004    0.244    0.807    0.001    0.011
    edu               0.142    0.067    2.130    0.033    0.142    0.090
  SE01_04 ~                                                             
    male              0.053    0.115    0.460    0.646    0.053    0.020
    age               0.007    0.004    2.045    0.041    0.007    0.085
    edu               0.126    0.066    1.904    0.057    0.126    0.079

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .SE01_01 ~~                                                            
   .SE01_02    (x)    0.107    0.044    2.444    0.015    0.107    0.142
 .SE01_03 ~~                                                            
   .SE01_04    (x)    0.107    0.044    2.444    0.015    0.107    0.158
  pri_con ~~                                                            
    grats_gen        -0.282    0.096   -2.953    0.003   -0.157   -0.157
    pri_delib         1.328    0.131   10.165    0.000    0.563    0.563
    self_eff         -0.378    0.091   -4.146    0.000   -0.212   -0.212
    trust            -0.463    0.066   -7.039    0.000   -0.358   -0.358
  grats_gen ~~                                                          
    pri_delib        -0.069    0.103   -0.672    0.502   -0.041   -0.041
    self_eff          0.470    0.067    7.039    0.000    0.373    0.373
    trust             0.654    0.067    9.731    0.000    0.714    0.714
  pri_delib ~~                                                          
    self_eff         -0.327    0.095   -3.456    0.001   -0.198   -0.198
    trust            -0.220    0.074   -2.956    0.003   -0.183   -0.183
  self_eff ~~                                                           
    trust             0.500    0.055    9.139    0.000    0.553    0.553

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.369    0.292   11.557    0.000    3.369    1.955
   .PC01_02           3.769    0.304   12.398    0.000    3.769    2.135
   .PC01_04           3.571    0.297   12.020    0.000    3.571    2.035
   .PC01_05           3.414    0.304   11.229    0.000    3.414    1.937
   .PC01_06           3.215    0.288   11.155    0.000    3.215    1.875
   .PC01_07           3.461    0.294   11.780    0.000    3.461    2.008
   .GR02_01           4.319    0.224   19.252    0.000    4.319    3.215
   .GR02_02           4.492    0.244   18.372    0.000    4.492    3.170
   .GR02_03           5.244    0.222   23.667    0.000    5.244    3.917
   .GR02_04           4.988    0.221   22.522    0.000    4.988    3.795
   .GR02_05           4.905    0.254   19.323    0.000    4.905    3.422
   .PD01_01           4.493    0.290   15.507    0.000    4.493    2.602
   .PD01_02           3.997    0.248   16.102    0.000    3.997    2.601
   .PD01_03           4.432    0.270   16.438    0.000    4.432    2.845
   .PD01_04           4.506    0.295   15.283    0.000    4.506    2.640
   .PD01_05           5.000    0.276   18.089    0.000    5.000    3.018
   .SE01_01           4.824    0.249   19.360    0.000    4.824    3.495
   .SE01_02           5.731    0.234   24.466    0.000    5.731    4.247
   .SE01_03           4.819    0.226   21.329    0.000    4.819    3.598
   .SE01_04           4.533    0.234   19.381    0.000    4.533    3.363
   .TR02_01           5.001    0.210   23.817    0.000    5.001    4.339
   .TR01_01           5.083    0.219   23.224    0.000    5.083    4.010
   .TR01_02           4.951    0.189   26.178    0.000    4.951    4.505
   .TR01_03           4.871    0.200   24.361    0.000    4.871    4.223
   .TR02_02           5.361    0.200   26.772    0.000    5.361    4.664
   .TR01_04           5.521    0.205   26.991    0.000    5.521    4.600
   .TR01_05           5.134    0.197   26.024    0.000    5.134    4.440
   .TR01_06           5.232    0.188   27.764    0.000    5.232    4.728
   .TR02_03           5.704    0.213   26.795    0.000    5.704    4.727
   .TR01_07           5.955    0.193   30.911    0.000    5.955    5.060
   .TR01_08           4.855    0.218   22.270    0.000    4.855    3.745
   .TR01_09           5.581    0.231   24.175    0.000    5.581    4.149
   .self_dis_log      1.376    0.375    3.673    0.000    1.376    0.602
    pri_con           0.000                               0.000    0.000
    grats_gen         0.000                               0.000    0.000
    pri_delib         0.000                               0.000    0.000
    self_eff          0.000                               0.000    0.000
   .trust_communty    0.000                               0.000    0.000
   .trust_provider    0.000                               0.000    0.000
   .trust_system      0.000                               0.000    0.000
    trust             0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.403    0.050    8.097    0.000    0.403    0.136
   .PC01_02           0.582    0.103    5.658    0.000    0.582    0.187
   .PC01_04           0.628    0.077    8.148    0.000    0.628    0.204
   .PC01_05           0.533    0.064    8.356    0.000    0.533    0.171
   .PC01_06           1.069    0.116    9.245    0.000    1.069    0.364
   .PC01_07           0.430    0.065    6.564    0.000    0.430    0.145
   .GR02_01           0.522    0.054    9.737    0.000    0.522    0.289
   .GR02_02           0.386    0.039    9.864    0.000    0.386    0.192
   .GR02_03           0.452    0.074    6.145    0.000    0.452    0.252
   .GR02_04           0.473    0.049    9.740    0.000    0.473    0.273
   .GR02_05           0.569    0.062    9.128    0.000    0.569    0.277
   .PD01_01           0.731    0.110    6.625    0.000    0.731    0.245
   .PD01_02           1.330    0.128   10.403    0.000    1.330    0.564
   .PD01_03           1.311    0.128   10.223    0.000    1.311    0.540
   .PD01_04           1.305    0.147    8.875    0.000    1.305    0.448
   .PD01_05           1.585    0.129   12.331    0.000    1.585    0.577
   .SE01_01           0.620    0.086    7.205    0.000    0.620    0.326
   .SE01_02           0.922    0.120    7.706    0.000    0.922    0.506
   .SE01_03           0.693    0.096    7.211    0.000    0.693    0.386
   .SE01_04           0.665    0.077    8.616    0.000    0.665    0.366
   .TR02_01           0.331    0.035    9.367    0.000    0.331    0.249
   .TR01_01           0.596    0.076    7.793    0.000    0.596    0.371
   .TR01_02           0.471    0.049    9.541    0.000    0.471    0.390
   .TR01_03           0.412    0.044    9.414    0.000    0.412    0.310
   .TR02_02           0.354    0.037    9.508    0.000    0.354    0.268
   .TR01_04           0.363    0.038    9.456    0.000    0.363    0.252
   .TR01_05           0.543    0.054   10.032    0.000    0.543    0.406
   .TR01_06           0.405    0.036   11.351    0.000    0.405    0.331
   .TR02_03           0.374    0.041    9.150    0.000    0.374    0.257
   .TR01_07           0.691    0.054   12.787    0.000    0.691    0.499
   .TR01_08           0.953    0.080   11.888    0.000    0.953    0.567
   .TR01_09           0.555    0.059    9.412    0.000    0.555    0.307
   .self_dis_log      4.375    0.209   20.963    0.000    4.375    0.839
    pri_con           2.545    0.144   17.641    0.000    1.000    1.000
    grats_gen         1.278    0.114   11.204    0.000    1.000    1.000
    pri_delib         2.183    0.158   13.845    0.000    1.000    1.000
    self_eff          1.247    0.113   11.065    0.000    1.000    1.000
   .trust_communty    0.332    0.041    8.103    0.000    0.336    0.336
   .trust_provider    0.048    0.018    2.592    0.010    0.050    0.050
   .trust_system     -0.078    0.019   -4.083    0.000   -0.073   -0.073
    trust             0.657    0.072    9.083    0.000    1.000    1.000
rsquare_fit_prereg <- inspect(fit_prereg, what = "rsquare")["self_dis_log"]

First, first is not optimal but still okaish, \(\chi^2\)(477) = 1586.06, p < .001, CFI = .93, RMSEA = .06, 90% CI [.06, .07], SRMR = .05. The result show the same problems of multicollinearity, namely that trust reduces online communication (despite a positive and more “plausible” postive bivariate relation).

Results without covariates

As stated in our preregistration, we also provide the results without controlling for covariates. Note were here now using the updated preregistered model as reported in the paper.

model <- "
  pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
  grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
  pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
  self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
  trust_community =~ TR01_01 + TR01_02 + TR01_03
  trust_provider =~ TR01_04 + TR01_05 + TR01_06
  trust_system =~ TR01_07 + TR01_08 + TR01_09
  trust_spec =~ trust_community + trust_provider + trust_system

words_log ~ a1*pri_con + b1*grats_gen + c1*pri_delib + d1*self_eff + e1*trust_spec
"
fit_prereg <- sem(model, data = d, estimator = "MLR", missing = "ML")
summary(fit_prereg, fit = TRUE, std = TRUE)
lavaan 0.6.16.1845 ended normally after 124 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       109
  Number of equality constraints                     1

  Number of observations                           559
  Number of missing patterns                         3

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                              1217.911     931.048
  Degrees of freedom                               387         387
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.308
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                             13164.929    9384.152
  Degrees of freedom                               435         435
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.403

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.935       0.939
  Tucker-Lewis Index (TLI)                       0.927       0.932
                                                                  
  Robust Comparative Fit Index (CFI)                         0.944
  Robust Tucker-Lewis Index (TLI)                            0.937

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -23976.938  -23976.938
  Scaling correction factor                                  1.472
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -23367.982  -23367.982
  Scaling correction factor                                  1.347
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               48169.876   48169.876
  Bayesian (BIC)                             48637.100   48637.100
  Sample-size adjusted Bayesian (SABIC)      48294.256   48294.256

Root Mean Square Error of Approximation:

  RMSEA                                          0.062       0.050
  90 Percent confidence interval - lower         0.058       0.047
  90 Percent confidence interval - upper         0.066       0.054
  P-value H_0: RMSEA <= 0.050                    0.000       0.467
  P-value H_0: RMSEA >= 0.080                    0.000       0.000
                                                                  
  Robust RMSEA                                               0.057
  90 Percent confidence interval - lower                     0.052
  90 Percent confidence interval - upper                     0.062
  P-value H_0: Robust RMSEA <= 0.050                         0.009
  P-value H_0: Robust RMSEA >= 0.080                         0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.054       0.054

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                              
    PC01_01             1.000                               1.602    0.929
    PC01_02             0.994    0.028   36.133    0.000    1.592    0.901
    PC01_04             0.977    0.027   35.564    0.000    1.566    0.892
    PC01_05             1.001    0.024   41.964    0.000    1.604    0.910
    PC01_06             0.854    0.038   22.418    0.000    1.368    0.798
    PC01_07             0.996    0.022   44.916    0.000    1.596    0.925
  grats_gen =~                                                            
    GR02_01             1.000                               1.128    0.841
    GR02_02             1.123    0.034   33.239    0.000    1.268    0.895
    GR02_03             1.029    0.048   21.249    0.000    1.161    0.867
    GR02_04             0.991    0.049   20.327    0.000    1.118    0.851
    GR02_05             1.073    0.040   26.562    0.000    1.211    0.845
  pri_delib =~                                                            
    PD01_01             1.000                               1.491    0.864
    PD01_02             0.676    0.047   14.375    0.000    1.008    0.657
    PD01_03             0.708    0.053   13.262    0.000    1.055    0.678
    PD01_04             0.847    0.047   18.200    0.000    1.264    0.741
    PD01_05             0.724    0.049   14.914    0.000    1.079    0.652
  self_eff =~                                                             
    SE01_01             1.000                               1.134    0.821
    SE01_02             0.808    0.059   13.658    0.000    0.916    0.679
    SE01_03             0.928    0.045   20.697    0.000    1.052    0.784
    SE01_04             0.939    0.042   22.307    0.000    1.064    0.788
  trust_community =~                                                      
    TR01_01             1.000                               1.035    0.817
    TR01_02             0.811    0.052   15.509    0.000    0.839    0.763
    TR01_03             0.915    0.047   19.410    0.000    0.947    0.821
  trust_provider =~                                                       
    TR01_04             1.000                               1.059    0.883
    TR01_05             0.854    0.040   21.308    0.000    0.904    0.781
    TR01_06             0.829    0.042   19.834    0.000    0.878    0.792
  trust_system =~                                                         
    TR01_07             1.000                               0.801    0.680
    TR01_08             1.058    0.082   12.937    0.000    0.847    0.654
    TR01_09             1.405    0.088   16.009    0.000    1.125    0.837
  trust_spec =~                                                           
    trust_communty      1.000                               0.843    0.843
    trust_provider      1.159    0.080   14.577    0.000    0.955    0.955
    trust_system        0.970    0.079   12.344    0.000    1.057    1.057

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  words_log ~                                                           
    pri_con   (a1)   -0.033    0.079   -0.415    0.678   -0.053   -0.023
    grats_gen (b1)   -0.003    0.147   -0.024    0.981   -0.004   -0.002
    pri_delib (c1)   -0.163    0.092   -1.776    0.076   -0.243   -0.105
    self_eff  (d1)    0.783    0.139    5.627    0.000    0.888    0.384
    trust_spc (e1)   -0.108    0.237   -0.456    0.648   -0.095   -0.041

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .SE01_01 ~~                                                            
   .SE01_02    (x)    0.115    0.046    2.494    0.013    0.115    0.147
 .SE01_03 ~~                                                            
   .SE01_04    (x)    0.115    0.046    2.494    0.013    0.115    0.167
  pri_con ~~                                                            
    grats_gen        -0.283    0.096   -2.952    0.003   -0.157   -0.157
    pri_delib         1.354    0.132   10.246    0.000    0.566    0.566
    self_eff         -0.382    0.092   -4.162    0.000   -0.210   -0.210
    trust_spec       -0.411    0.070   -5.861    0.000   -0.294   -0.294
  grats_gen ~~                                                          
    pri_delib        -0.072    0.101   -0.710    0.478   -0.043   -0.043
    self_eff          0.462    0.067    6.874    0.000    0.361    0.361
    trust_spec        0.749    0.081    9.276    0.000    0.761    0.761
  pri_delib ~~                                                          
    self_eff         -0.334    0.093   -3.573    0.000   -0.198   -0.198
    trust_spec       -0.133    0.079   -1.676    0.094   -0.102   -0.102
  self_eff ~~                                                           
    trust_spec        0.527    0.059    8.856    0.000    0.532    0.532

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.293    0.073   45.160    0.000    3.293    1.910
   .PC01_02           3.327    0.075   44.525    0.000    3.327    1.883
   .PC01_04           3.222    0.074   43.395    0.000    3.222    1.835
   .PC01_05           3.263    0.075   43.748    0.000    3.263    1.850
   .PC01_06           3.004    0.073   41.410    0.000    3.004    1.751
   .PC01_07           3.224    0.073   44.188    0.000    3.224    1.869
   .GR02_01           4.281    0.057   75.413    0.000    4.281    3.190
   .GR02_02           4.596    0.060   76.742    0.000    4.596    3.246
   .GR02_03           5.131    0.057   90.628    0.000    5.131    3.833
   .GR02_04           5.089    0.056   91.559    0.000    5.089    3.873
   .GR02_05           4.692    0.061   77.447    0.000    4.692    3.276
   .PD01_01           3.658    0.073   50.136    0.000    3.658    2.121
   .PD01_02           3.352    0.065   51.628    0.000    3.352    2.184
   .PD01_03           4.191    0.066   63.662    0.000    4.191    2.693
   .PD01_04           4.081    0.072   56.578    0.000    4.081    2.393
   .PD01_05           4.351    0.070   62.149    0.000    4.351    2.629
   .SE01_01           5.277    0.059   90.198    0.000    5.277    3.821
   .SE01_02           5.523    0.057   96.568    0.000    5.523    4.093
   .SE01_03           5.224    0.057   92.085    0.000    5.224    3.895
   .SE01_04           5.138    0.057   89.952    0.000    5.138    3.805
   .TR01_01           4.764    0.054   88.923    0.000    4.764    3.761
   .TR01_02           4.844    0.046  104.195    0.000    4.844    4.407
   .TR01_03           4.615    0.049   94.568    0.000    4.615    4.000
   .TR01_04           5.403    0.051  106.478    0.000    5.403    4.504
   .TR01_05           5.200    0.049  106.180    0.000    5.200    4.491
   .TR01_06           5.129    0.047  109.405    0.000    5.129    4.627
   .TR01_07           5.725    0.050  114.994    0.000    5.725    4.864
   .TR01_08           4.834    0.055   88.152    0.000    4.834    3.728
   .TR01_09           5.179    0.057   91.089    0.000    5.179    3.853
   .words_log         1.834    0.098   18.765    0.000    1.834    0.794
    pri_con           0.000                               0.000    0.000
    grats_gen         0.000                               0.000    0.000
    pri_delib         0.000                               0.000    0.000
    self_eff          0.000                               0.000    0.000
   .trust_communty    0.000                               0.000    0.000
   .trust_provider    0.000                               0.000    0.000
   .trust_system      0.000                               0.000    0.000
    trust_spec        0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.406    0.050    8.083    0.000    0.406    0.136
   .PC01_02           0.587    0.104    5.655    0.000    0.587    0.188
   .PC01_04           0.630    0.077    8.203    0.000    0.630    0.205
   .PC01_05           0.536    0.065    8.267    0.000    0.536    0.172
   .PC01_06           1.069    0.116    9.179    0.000    1.069    0.363
   .PC01_07           0.429    0.065    6.568    0.000    0.429    0.144
   .GR02_01           0.528    0.055    9.611    0.000    0.528    0.293
   .GR02_02           0.398    0.041    9.622    0.000    0.398    0.199
   .GR02_03           0.445    0.073    6.105    0.000    0.445    0.248
   .GR02_04           0.477    0.048    9.892    0.000    0.477    0.276
   .GR02_05           0.585    0.066    8.870    0.000    0.585    0.285
   .PD01_01           0.753    0.110    6.829    0.000    0.753    0.253
   .PD01_02           1.340    0.130   10.302    0.000    1.340    0.569
   .PD01_03           1.310    0.129   10.157    0.000    1.310    0.540
   .PD01_04           1.311    0.147    8.901    0.000    1.311    0.451
   .PD01_05           1.575    0.129   12.243    0.000    1.575    0.575
   .SE01_01           0.621    0.088    7.052    0.000    0.621    0.326
   .SE01_02           0.981    0.129    7.630    0.000    0.981    0.539
   .SE01_03           0.692    0.095    7.255    0.000    0.692    0.385
   .SE01_04           0.690    0.081    8.479    0.000    0.690    0.378
   .TR01_01           0.533    0.070    7.621    0.000    0.533    0.333
   .TR01_02           0.504    0.057    8.919    0.000    0.504    0.417
   .TR01_03           0.435    0.045    9.753    0.000    0.435    0.327
   .TR01_04           0.317    0.034    9.382    0.000    0.317    0.220
   .TR01_05           0.523    0.054    9.680    0.000    0.523    0.390
   .TR01_06           0.458    0.044   10.406    0.000    0.458    0.373
   .TR01_07           0.744    0.059   12.699    0.000    0.744    0.537
   .TR01_08           0.963    0.079   12.195    0.000    0.963    0.573
   .TR01_09           0.542    0.062    8.697    0.000    0.542    0.300
   .words_log         4.462    0.216   20.659    0.000    4.462    0.835
    pri_con           2.567    0.147   17.512    0.000    1.000    1.000
    grats_gen         1.273    0.115   11.095    0.000    1.000    1.000
    pri_delib         2.224    0.158   14.113    0.000    1.000    1.000
    self_eff          1.286    0.115   11.215    0.000    1.000    1.000
   .trust_communty    0.309    0.046    6.756    0.000    0.289    0.289
   .trust_provider    0.098    0.032    3.083    0.002    0.088    0.088
   .trust_system     -0.075    0.020   -3.851    0.000   -0.117   -0.117
    trust_spec        0.761    0.096    7.942    0.000    1.000    1.000
rsquare_fit_prereg <- inspect(fit_prereg, what = "rsquare")["comm"]

The results remain virtually the same (see page analyses).

Results including removed participants

As stated in the preregistration, we also report the analyses including the deleted participants.

We first need to rerun the baseline model to get new factor scores (output not shown here).

model_baseline <- "
  pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07
  grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
  grats_inf =~ GR01_01 + GR01_02 + GR01_03 
  grats_rel =~ GR01_04 + GR01_05 + GR01_06 
  grats_par =~ GR01_07 + GR01_08 + GR01_09
  grats_ide =~ GR01_10 + GR01_11 + GR01_12 
  grats_ext =~ GR01_13 + GR01_14 + GR01_15
  grats_spec =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext
  pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
  trust_gen =~ TR02_01 + TR02_02 + TR02_03
  trust_community =~ TR01_01 + TR01_02 + TR01_03
  trust_provider =~ TR01_04 + TR01_05 + TR01_06
  trust_system =~ TR01_07 + TR01_08 + TR01_09
  trust_spec =~ trust_community + trust_provider + trust_system
  self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
    SE01_01 ~~ x*SE01_02
    SE01_03 ~~ x*SE01_04
  Words_log =~ words_log
  
  Words_log ~~ a1*pri_con + b1*grats_gen + c1*pri_delib + d1*self_eff + e1*trust_spec + f1*trust_gen + g1*grats_spec
"
fit_baseline <- sem(model_baseline, data = d_all, missing = "ML")
summary(fit_baseline, standardized = TRUE, fit.measures = TRUE)
# extract model predicted values for items & calc means
d_fs <- lavPredict(fit_baseline, type = "ov") %>% 
  as.data.frame() %>% 
  mutate(version = d_all$version, 
         grats_gen_fs = rowMeans(select(., starts_with("GR02"))),
         grats_spec_fs = rowMeans(select(., starts_with("GR01"))), 
         pri_con_fs = rowMeans(select(., starts_with("PC01"))),
         trust_gen_fs = rowMeans(select(., TR02_01, TR02_02, TR02_03)),
         trust_spec_fs = rowMeans(select(., TR01_01: TR01_09)),
         pri_del_fs = rowMeans(select(., starts_with("PD01"))),
         self_eff_fs = rowMeans(select(., starts_with("SE01")))) %>%
  select(version, pri_con_fs, grats_gen_fs, grats_spec_fs, pri_del_fs, self_eff_fs, trust_gen_fs, trust_spec_fs, words_log)

# combine d with d factor scores
d_all %<>% cbind(select(d_fs, -version, -words_log))

Let’s now inspect the results of the (updated) preregistered model including removed cases.

model <- "
  pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
  grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
  pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
  self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
  trust_community =~ TR01_01 + TR01_02 + TR01_03
  trust_provider =~ TR01_04 + TR01_05 + TR01_06
  trust_system =~ TR01_07 + TR01_08 + TR01_09
  trust_spec =~ trust_community + trust_provider + trust_system

words_log ~ a1*pri_con + b1*grats_gen + c1*pri_delib + d1*self_eff + e1*trust_spec

# Covariates
words_log + GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_01 + TR01_02 + TR01_03 + TR01_04 + TR01_05 + TR01_06 + TR01_07 + TR01_08 + TR01_09 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu

# Covariances
male ~~ age + edu
age ~~ edu
"
fit_prereg <- sem(model, data = d_all, estimator = "MLR", missing = "ML")
summary(fit_prereg, fit = TRUE, std = TRUE)
lavaan 0.6.16.1845 ended normally after 343 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       208
  Number of equality constraints                     1

  Number of observations                           590
  Number of missing patterns                         5

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                              1225.236     920.651
  Degrees of freedom                               387         387
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.331
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                             14258.264   10500.309
  Degrees of freedom                               528         528
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.358

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.939       0.946
  Tucker-Lewis Index (TLI)                       0.917       0.927
                                                                  
  Robust Comparative Fit Index (CFI)                         0.948
  Robust Tucker-Lewis Index (TLI)                            0.930

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -28885.372  -28885.372
  Scaling correction factor                                  1.261
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -28272.754  -28272.754
  Scaling correction factor                                  1.309
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               58184.745   58184.745
  Bayesian (BIC)                             59091.430   59091.430
  Sample-size adjusted Bayesian (SABIC)      58434.273   58434.273

Root Mean Square Error of Approximation:

  RMSEA                                          0.061       0.048
  90 Percent confidence interval - lower         0.057       0.045
  90 Percent confidence interval - upper         0.064       0.052
  P-value H_0: RMSEA <= 0.050                    0.000       0.779
  P-value H_0: RMSEA >= 0.080                    0.000       0.000
                                                                  
  Robust RMSEA                                               0.055
  90 Percent confidence interval - lower                     0.051
  90 Percent confidence interval - upper                     0.060
  P-value H_0: Robust RMSEA <= 0.050                         0.029
  P-value H_0: Robust RMSEA >= 0.080                         0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.049       0.049

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                              
    PC01_01             1.000                               1.614    0.921
    PC01_02             0.993    0.027   37.250    0.000    1.602    0.897
    PC01_04             0.965    0.026   36.598    0.000    1.558    0.882
    PC01_05             1.003    0.023   43.336    0.000    1.620    0.908
    PC01_06             0.867    0.036   24.417    0.000    1.400    0.803
    PC01_07             1.000    0.023   44.394    0.000    1.614    0.922
  grats_gen =~                                                            
    GR02_01             1.000                               1.148    0.847
    GR02_02             1.117    0.032   35.469    0.000    1.283    0.896
    GR02_03             1.009    0.044   22.743    0.000    1.159    0.864
    GR02_04             0.980    0.045   21.786    0.000    1.126    0.849
    GR02_05             1.069    0.037   28.775    0.000    1.228    0.855
  pri_delib =~                                                            
    PD01_01             1.000                               1.466    0.850
    PD01_02             0.696    0.046   15.077    0.000    1.021    0.656
    PD01_03             0.719    0.053   13.693    0.000    1.055    0.674
    PD01_04             0.846    0.045   18.747    0.000    1.241    0.729
    PD01_05             0.732    0.048   15.297    0.000    1.073    0.652
  self_eff =~                                                             
    SE01_01             1.000                               1.140    0.816
    SE01_02             0.841    0.054   15.666    0.000    0.959    0.700
    SE01_03             0.927    0.042   22.086    0.000    1.056    0.783
    SE01_04             0.930    0.040   22.998    0.000    1.060    0.776
  trust_community =~                                                      
    TR01_01             1.000                               1.043    0.816
    TR01_02             0.812    0.053   15.263    0.000    0.846    0.755
    TR01_03             0.925    0.044   21.134    0.000    0.964    0.823
  trust_provider =~                                                       
    TR01_04             1.000                               1.083    0.883
    TR01_05             0.884    0.038   23.385    0.000    0.958    0.803
    TR01_06             0.859    0.039   22.290    0.000    0.931    0.815
  trust_system =~                                                         
    TR01_07             1.000                               0.781    0.658
    TR01_08             1.119    0.096   11.602    0.000    0.874    0.674
    TR01_09             1.444    0.101   14.345    0.000    1.128    0.838
  trust_spec =~                                                           
    trust_communty      1.000                               0.866    0.866
    trust_provider      1.126    0.075   14.995    0.000    0.938    0.938
    trust_system        0.897    0.084   10.673    0.000    1.036    1.036

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  words_log ~                                                           
    pri_con   (a1)   -0.055    0.076   -0.722    0.471   -0.089   -0.039
    grats_gen (b1)    0.012    0.146    0.085    0.933    0.014    0.006
    pri_delib (c1)   -0.166    0.092   -1.812    0.070   -0.244   -0.107
    self_eff  (d1)    0.773    0.137    5.634    0.000    0.881    0.386
    trust_spc (e1)   -0.169    0.235   -0.718    0.472   -0.152   -0.067
    male              0.010    0.191    0.050    0.960    0.010    0.002
    age               0.007    0.006    1.213    0.225    0.007    0.049
    edu               0.195    0.113    1.728    0.084    0.195    0.072
  GR02_01 ~                                                             
    male             -0.124    0.113   -1.101    0.271   -0.124   -0.046
    age              -0.001    0.004   -0.330    0.741   -0.001   -0.014
    edu               0.003    0.067    0.044    0.965    0.003    0.002
  GR02_02 ~                                                             
    male             -0.059    0.118   -0.496    0.620   -0.059   -0.020
    age               0.004    0.004    1.001    0.317    0.004    0.043
    edu              -0.080    0.070   -1.147    0.252   -0.080   -0.047
  GR02_03 ~                                                             
    male             -0.029    0.112   -0.262    0.793   -0.029   -0.011
    age               0.001    0.004    0.189    0.850    0.001    0.008
    edu              -0.096    0.065   -1.477    0.140   -0.096   -0.060
  GR02_04 ~                                                             
    male              0.011    0.110    0.099    0.921    0.011    0.004
    age               0.004    0.004    1.229    0.219    0.004    0.052
    edu              -0.087    0.066   -1.304    0.192   -0.087   -0.055
  GR02_05 ~                                                             
    male             -0.135    0.120   -1.124    0.261   -0.135   -0.047
    age              -0.005    0.004   -1.196    0.232   -0.005   -0.051
    edu               0.002    0.071    0.027    0.979    0.002    0.001
  PC01_01 ~                                                             
    male             -0.116    0.148   -0.782    0.434   -0.116   -0.033
    age              -0.007    0.005   -1.521    0.128   -0.007   -0.065
    edu               0.133    0.086    1.539    0.124    0.133    0.064
  PC01_02 ~                                                             
    male             -0.257    0.150   -1.708    0.088   -0.257   -0.072
    age              -0.011    0.005   -2.348    0.019   -0.011   -0.098
    edu               0.057    0.088    0.643    0.520    0.057    0.027
  PC01_04 ~                                                             
    male             -0.190    0.148   -1.283    0.199   -0.190   -0.054
    age              -0.012    0.005   -2.452    0.014   -0.012   -0.102
    edu               0.132    0.087    1.513    0.130    0.132    0.063
  PC01_05 ~                                                             
    male             -0.057    0.150   -0.381    0.703   -0.057   -0.016
    age              -0.008    0.005   -1.730    0.084   -0.008   -0.073
    edu               0.108    0.088    1.225    0.221    0.108    0.051
  PC01_06 ~                                                             
    male             -0.100    0.147   -0.676    0.499   -0.100   -0.029
    age              -0.008    0.005   -1.686    0.092   -0.008   -0.071
    edu               0.068    0.086    0.799    0.424    0.068    0.033
  PC01_07 ~                                                             
    male             -0.145    0.147   -0.984    0.325   -0.145   -0.041
    age              -0.009    0.005   -1.922    0.055   -0.009   -0.081
    edu               0.100    0.086    1.161    0.246    0.100    0.048
  TR01_01 ~                                                             
    male             -0.274    0.106   -2.594    0.009   -0.274   -0.107
    age              -0.005    0.004   -1.330    0.184   -0.005   -0.057
    edu               0.005    0.061    0.076    0.940    0.005    0.003
  TR01_02 ~                                                             
    male             -0.151    0.094   -1.607    0.108   -0.151   -0.067
    age              -0.002    0.003   -0.519    0.604   -0.002   -0.023
    edu               0.014    0.053    0.265    0.791    0.014    0.011
  TR01_03 ~                                                             
    male             -0.116    0.098   -1.183    0.237   -0.116   -0.049
    age              -0.005    0.003   -1.431    0.152   -0.005   -0.063
    edu              -0.000    0.059   -0.000    1.000   -0.000   -0.000
  TR01_04 ~                                                             
    male             -0.085    0.102   -0.831    0.406   -0.085   -0.035
    age               0.000    0.003    0.101    0.919    0.000    0.004
    edu              -0.054    0.058   -0.920    0.357   -0.054   -0.037
  TR01_05 ~                                                             
    male             -0.032    0.099   -0.319    0.749   -0.032   -0.013
    age               0.001    0.003    0.235    0.814    0.001    0.010
    edu               0.015    0.058    0.259    0.796    0.015    0.011
  TR01_06 ~                                                             
    male              0.048    0.095    0.501    0.616    0.048    0.021
    age              -0.004    0.003   -1.272    0.203   -0.004   -0.053
    edu               0.013    0.056    0.227    0.820    0.013    0.009
  TR01_07 ~                                                             
    male              0.070    0.098    0.707    0.480    0.070    0.029
    age              -0.001    0.003   -0.304    0.762   -0.001   -0.013
    edu              -0.063    0.057   -1.088    0.276   -0.063   -0.044
  TR01_08 ~                                                             
    male              0.036    0.108    0.337    0.736    0.036    0.014
    age               0.002    0.003    0.651    0.515    0.002    0.027
    edu              -0.092    0.064   -1.447    0.148   -0.092   -0.060
  TR01_09 ~                                                             
    male             -0.116    0.111   -1.047    0.295   -0.116   -0.043
    age              -0.001    0.004   -0.346    0.730   -0.001   -0.015
    edu              -0.153    0.066   -2.302    0.021   -0.153   -0.095
  PD01_01 ~                                                             
    male             -0.136    0.143   -0.956    0.339   -0.136   -0.040
    age              -0.018    0.005   -3.926    0.000   -0.018   -0.159
    edu              -0.021    0.082   -0.255    0.799   -0.021   -0.010
  PD01_02 ~                                                             
    male             -0.102    0.129   -0.792    0.428   -0.102   -0.033
    age              -0.016    0.004   -4.086    0.000   -0.016   -0.164
    edu               0.031    0.076    0.409    0.682    0.031    0.017
  PD01_03 ~                                                             
    male             -0.294    0.129   -2.269    0.023   -0.294   -0.094
    age              -0.005    0.004   -1.278    0.201   -0.005   -0.053
    edu               0.095    0.078    1.207    0.228    0.095    0.051
  PD01_04 ~                                                             
    male             -0.393    0.139   -2.825    0.005   -0.393   -0.116
    age              -0.010    0.005   -2.237    0.025   -0.010   -0.094
    edu               0.109    0.083    1.318    0.187    0.109    0.054
  PD01_05 ~                                                             
    male             -0.184    0.137   -1.344    0.179   -0.184   -0.056
    age              -0.013    0.004   -3.127    0.002   -0.013   -0.126
    edu              -0.003    0.082   -0.036    0.971   -0.003   -0.001
  SE01_01 ~                                                             
    male              0.137    0.116    1.185    0.236    0.137    0.049
    age               0.001    0.004    0.247    0.805    0.001    0.010
    edu               0.207    0.067    3.092    0.002    0.207    0.125
  SE01_02 ~                                                             
    male              0.057    0.111    0.510    0.610    0.057    0.021
    age              -0.012    0.004   -3.203    0.001   -0.012   -0.131
    edu               0.188    0.065    2.868    0.004    0.188    0.115
  SE01_03 ~                                                             
    male              0.211    0.112    1.883    0.060    0.211    0.078
    age               0.001    0.004    0.376    0.707    0.001    0.016
    edu               0.147    0.066    2.239    0.025    0.147    0.092
  SE01_04 ~                                                             
    male              0.060    0.113    0.534    0.593    0.060    0.022
    age               0.006    0.004    1.559    0.119    0.006    0.064
    edu               0.103    0.066    1.547    0.122    0.103    0.063

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .SE01_01 ~~                                                            
   .SE01_02    (x)    0.101    0.043    2.327    0.020    0.101    0.136
 .SE01_03 ~~                                                            
   .SE01_04    (x)    0.101    0.043    2.327    0.020    0.101    0.145
  male ~~                                                               
    age               0.582    0.319    1.821    0.069    0.582    0.075
    edu               0.054    0.017    3.149    0.002    0.054    0.129
  age ~~                                                                
    edu              -1.173    0.534   -2.197    0.028   -1.173   -0.089
  pri_con ~~                                                            
    grats_gen        -0.175    0.097   -1.814    0.070   -0.094   -0.094
    pri_delib         1.380    0.128   10.754    0.000    0.583    0.583
    self_eff         -0.387    0.094   -4.139    0.000   -0.211   -0.211
    trust_spec       -0.359    0.071   -5.087    0.000   -0.247   -0.247
  grats_gen ~~                                                          
    pri_delib         0.028    0.101    0.279    0.780    0.017    0.017
    self_eff          0.477    0.068    7.054    0.000    0.364    0.364
    trust_spec        0.791    0.082    9.617    0.000    0.763    0.763
  pri_delib ~~                                                          
    self_eff         -0.301    0.095   -3.152    0.002   -0.180   -0.180
    trust_spec       -0.087    0.080   -1.077    0.281   -0.065   -0.065
  self_eff ~~                                                           
    trust_spec        0.577    0.061    9.418    0.000    0.561    0.561

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.498    0.285   12.262    0.000    3.498    1.996
   .PC01_02           3.931    0.297   13.239    0.000    3.931    2.200
   .PC01_04           3.664    0.288   12.717    0.000    3.664    2.074
   .PC01_05           3.536    0.296   11.964    0.000    3.536    1.983
   .PC01_06           3.363    0.282   11.916    0.000    3.363    1.928
   .PC01_07           3.594    0.286   12.562    0.000    3.594    2.052
   .GR02_01           4.412    0.221   19.925    0.000    4.412    3.255
   .GR02_02           4.607    0.240   19.169    0.000    4.607    3.216
   .GR02_03           5.283    0.218   24.244    0.000    5.283    3.941
   .GR02_04           5.031    0.219   23.024    0.000    5.031    3.793
   .GR02_05           4.978    0.247   20.124    0.000    4.978    3.464
   .PD01_01           4.628    0.280   16.502    0.000    4.628    2.684
   .PD01_02           4.156    0.243   17.087    0.000    4.156    2.672
   .PD01_03           4.435    0.264   16.823    0.000    4.435    2.832
   .PD01_04           4.565    0.286   15.986    0.000    4.565    2.683
   .PD01_05           5.081    0.267   19.039    0.000    5.081    3.085
   .SE01_01           4.739    0.242   19.554    0.000    4.739    3.390
   .SE01_02           5.620    0.231   24.359    0.000    5.620    4.100
   .SE01_03           4.751    0.220   21.629    0.000    4.751    3.524
   .SE01_04           4.635    0.231   20.053    0.000    4.635    3.392
   .TR01_01           5.089    0.215   23.712    0.000    5.089    3.982
   .TR01_02           4.958    0.189   26.240    0.000    4.958    4.422
   .TR01_03           4.880    0.199   24.579    0.000    4.880    4.163
   .TR01_04           5.485    0.203   26.974    0.000    5.485    4.472
   .TR01_05           5.119    0.199   25.747    0.000    5.119    4.291
   .TR01_06           5.229    0.189   27.617    0.000    5.229    4.576
   .TR01_07           5.814    0.190   30.580    0.000    5.814    4.897
   .TR01_08           4.870    0.215   22.701    0.000    4.870    3.757
   .TR01_09           5.562    0.227   24.468    0.000    5.562    4.132
   .words_log         1.092    0.366    2.983    0.003    1.092    0.478
    male              0.501    0.021   24.320    0.000    0.501    1.002
    age              45.546    0.641   71.087    0.000   45.546    2.927
    edu               1.869    0.035   53.888    0.000    1.869    2.219
    pri_con           0.000                               0.000    0.000
    grats_gen         0.000                               0.000    0.000
    pri_delib         0.000                               0.000    0.000
    self_eff          0.000                               0.000    0.000
   .trust_communty    0.000                               0.000    0.000
   .trust_provider    0.000                               0.000    0.000
   .trust_system      0.000                               0.000    0.000
    trust_spec        0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.436    0.056    7.806    0.000    0.436    0.142
   .PC01_02           0.571    0.097    5.868    0.000    0.571    0.179
   .PC01_04           0.637    0.074    8.605    0.000    0.637    0.204
   .PC01_05           0.528    0.061    8.714    0.000    0.528    0.166
   .PC01_06           1.059    0.113    9.379    0.000    1.059    0.348
   .PC01_07           0.427    0.063    6.808    0.000    0.427    0.139
   .GR02_01           0.514    0.051   10.019    0.000    0.514    0.280
   .GR02_02           0.395    0.039   10.042    0.000    0.395    0.192
   .GR02_03           0.447    0.070    6.420    0.000    0.447    0.249
   .GR02_04           0.482    0.046   10.501    0.000    0.482    0.274
   .GR02_05           0.546    0.059    9.296    0.000    0.546    0.264
   .PD01_01           0.740    0.107    6.934    0.000    0.740    0.249
   .PD01_02           1.306    0.125   10.421    0.000    1.306    0.540
   .PD01_03           1.305    0.123   10.595    0.000    1.305    0.532
   .PD01_04           1.280    0.139    9.177    0.000    1.280    0.442
   .PD01_05           1.507    0.122   12.323    0.000    1.507    0.556
   .SE01_01           0.616    0.083    7.419    0.000    0.616    0.315
   .SE01_02           0.896    0.114    7.854    0.000    0.896    0.477
   .SE01_03           0.672    0.090    7.507    0.000    0.672    0.370
   .SE01_04           0.727    0.085    8.536    0.000    0.727    0.389
   .TR01_01           0.521    0.063    8.240    0.000    0.521    0.319
   .TR01_02           0.534    0.062    8.573    0.000    0.534    0.425
   .TR01_03           0.435    0.045    9.667    0.000    0.435    0.317
   .TR01_04           0.326    0.034    9.681    0.000    0.326    0.217
   .TR01_05           0.505    0.053    9.566    0.000    0.505    0.355
   .TR01_06           0.434    0.042   10.438    0.000    0.434    0.333
   .TR01_07           0.796    0.067   11.919    0.000    0.796    0.565
   .TR01_08           0.909    0.076   11.880    0.000    0.909    0.541
   .TR01_09           0.516    0.058    8.930    0.000    0.516    0.285
   .words_log         4.329    0.208   20.776    0.000    4.329    0.830
    male              0.250    0.000 4879.994    0.000    0.250    1.000
    age             242.192    9.451   25.626    0.000  242.192    1.000
    edu               0.710    0.020   36.106    0.000    0.710    1.000
    pri_con           2.606    0.146   17.869    0.000    1.000    1.000
    grats_gen         1.319    0.112   11.741    0.000    1.000    1.000
    pri_delib         2.150    0.152   14.111    0.000    1.000    1.000
    self_eff          1.299    0.113   11.489    0.000    1.000    1.000
   .trust_communty    0.272    0.044    6.201    0.000    0.250    0.250
   .trust_provider    0.141    0.043    3.252    0.001    0.121    0.121
   .trust_system     -0.045    0.022   -2.067    0.039   -0.074   -0.074
    trust_spec        0.815    0.100    8.187    0.000    1.000    1.000

First, we can see that the analyses now include the data of 590 participants. However, when comparing the analyses, we see that results don’t differ in any meaningful way.